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Abstract. We introduce a class of self-interacting scalar theories in which the various coupling constants
obey a recursive relation. These imply a particularly simple form for the generating function of the Feynman
amplitudes with vanishing external momenta, as well as for the effective potential. In addition we discuss
an interesting duality inherent in these models. Specializing to the case of zero spacetime dimensions we
find intriguing nullification properties for the amplitudes.

1 Introduction

In this paper we discuss a special class of Euclidean theo-
ries of self-interacting scalar fields. More in particular, we
study amplitudes with vanishing external momentum, as
for instance implied in the definition of an effective poten-
tial; but also the special case of theories in zero spacetime
dimensions is subsumed (the zero-dimensional case is of
course of paradigmatic interest because the path integral
is a simple integral, amenable to straightforward solution
and manipulation). Most of our results will, in fact, be de-
rived for zero dimensions. Zero-dimensional field theories
have been amply discussed: apart from the useful intro-
ductory treatment in [1] we may refer to [2–5] as recent ap-
plications. The aim of this paper is to study properties of
essentially non-polynomial theories in which the coupling
constants obey a simple algebraic relation. In Sect. 2, we
define recursive theories, and show how the various zero-
momentum Green’s functions are related to one another
in a surprisingly simple manner, which allows us to ex-
press the complete set n-particle amplitudes in terms of
the tadpole alone. In Sect. 3, we study a duality inherent in
our models, that relates the elementary field in one theory
with a certain composite field in its dual. In Sect. 4 we dis-
cuss several explicitly solvable zero-dimensional recursive
theories. In Sect. 5, we tackle the structure of loop correc-
tions for general zero-dimensional self-interacting scalar
theories, with special emphasis on the occurrence of “nul-
lification”, that is, a special choice of parameters for which
all loop corrections of a given loop order vanish. Section 6
is devoted to nullification in recursive thories, where an
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intriguing pattern is exhibited. In Sect. 7, we address the
application of renormalization in zero dimensions, in the
spirit of [1].

2 Feynman amplitudes for recursive actions

We consider self-interacting theories of a field ϕ with mass
m in d Euclidean spacetime dimensions, with potentials
given by

V (ϕ) =
∑
n≥3

λn

n!
ϕn. (1)

We also introduce λ2 ≡ µ = m2. Note that in the sum n
runs, in principle, all the way up to infinity. Our class of
models is characterized by the following property: there
exist (dimensionful) constants α and β such that

λn+1 = λn(αn+ β), n ≥ 2. (2)

Of course, we can determine α, β from

α =
λ4

λ3
− λ3

µ
, β = 3

λ3

µ
− 2

λ4

λ3
, (3)

and the combination αϕ is dimensionless. The Lagrangian
density of these models is given by

L =
1
2
(�∇ϕ)2 +

µ

pβ

(
(1 − αϕ)−β/α − 1 − βϕ

)
,

p = α+ β, (4)

and in zero dimensions the action itself is simply

S(ϕ) =
µ

pβ

(
(1 − αϕ)−β/α − 1 − βϕ

)
. (5)

We call these models recursive. When −β/α is an integer
K ≥ 2, the potential is a finite polynomial of order K:
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ϕ3 theory is recursive, but neither pure ϕ4 theory nor
spontaneously broken ϕ4 theory are recursive.

Consider a connected Feynman diagram D(n) entering
into the 1 → n amplitude. Let this graph have I internal
lines, E = 1 + n external lines, Vk vertices of type ϕk and
L loops. We have

D(n) ∝ �
Lµ−I−E+dL/2λV3

3 λV4
4 · · · (6)

Here we have assumed that the regularization of the loop
integrals is performed in a manner that does not introduce
another physical mass scale (as would be the case in say,
Pauli–Villars regularization), so that a d-dimensional loop
integral contributes a factor md = µd/2; an example is
dimensional regularization. In that case there enters, of
course, an “engineering dimension”, which we include in
the (possibly very complicated) proportionality constant.
Note that this is consistent also for d = 0, since then loop
integrals are simply absent.

The two topological relations∑
k≥3

kVk = 2I + E,
∑
k≥3

Vk = I + 1 − L, (7)

can be written as follows for this diagram:

∑
k≥2

kλk
∂

∂λk
D(n) = d�

∂

∂�
D(n) − (n+ 1)D(n), (8)

∑
k≥2

λk
∂

∂λk
D(n) =

(
d

2
− 1

)
�
∂

∂�
D(n) − nD(n).

Since this holds for any D(n), it holds a fortiori also for
the full 1 → n amplitude a(n).

Let us now consider what happens if we add one ex-
ternal leg to the amplitudes. This may be done in several
ways. In the first place, we may simply attach the exter-
nal line to any ϕk vertex, thereby turning it into a ϕk+1

vertex, giving a factor Vkλk+1/(λkµ). In other words, at-
taching a line to any vertex in the diagram is equivalent
to the operation

D(n) →
∑
k≥3

λk+1

µ

∂

∂λk
D(n).

In the second place, we may attach the external line to any
line by a three-point vertex. If the momentum flowing in
the original line is q, the attachment turns (q2 +µ)−1 into
−λ3µ

−1(q2 +µ)−2, so that we can write this procedure as

D(n) → λ3

µ

∂

∂µ
D(n).

Note that this also works for internal lines in loop dia-
grams, owing to the fact that the external momenta all
vanish. In this way, we can form all amplitudes from the
vacuum bubbles of the theory, with the single exception
of the bare propagator. We also want to stress that, in
this procedure, the symmetry factors of all diagrams will
come out correct automatically: in a sense, our procedure

is how the symmetry factors are defined in the first place
anyway. We therefore have the following recursion between
amplitudes:

µa(n+ 1) = δn,0 +
∑
k≥2

λk+1
∂

∂λk
a(n), n ≥ 0. (9)

So far this is general for zero-momentum amplitudes. In
the case of recursive actions, we can use the relation be-
tween λk+1 and λk to good effect. Let us denote by φ(x)
the generating function of all 1 → n amplitudes:

φ(x) =
∑
n≥0

a(n)
xn

n!
. (10)

For recursive actions, this then satisfies the differential
equation

(µ+ px)
∂

∂x
φ+ αφ+ ((1 − d/2)β − dα) �

∂

∂�
φ = 1. (11)

The solution can be written as

φ(x) =
1
α

(
1 − 1

(1 + px/µ)α/p

)

+
1

(1 + px/µ)α/p
(12)

×
∑
L≥1

tL(µ;α, β)
(

�

(1 + px/µ)(β(1−d/2)−dα)/p

)L

.

we see that for recursive actions, all connected amplitudes
are completely determined by the tadpole φ(0) =

∑
L

tL�
L.

The above argument does not, however, allow us to deter-
mine the tadpole itself. This reflects the fact that, whereas
the operation of adding an extra external line is, in the
above, formulated as a fairly simple algorithm, the opera-
tion of adding an extra loop does not appear to follow any
simple algorithm yielding the right symmetry factors.

In zero dimensions, simple dimensional analysis shows
that tL(µ;α, β) can be written as µ−L times an expression
in α and β that is homogeneous of degree 2L − 1. More-
over, since the tadpole contains α and β only through the
coupling constants λk, which only enter in the numerator
of any Feynman diagram, we conclude that, for p �= 0,

tL =
p2L−1

µL
R2L−1(u), (13)

where Rq is a polynomial of degree q and the ratio between
α and β is encoded in

u =
2α+ β

α+ β
= 1 + α/p. (14)

It is clear that we may put µ = p = 1 without loss of
generality (except for the special case α + β = 0), since
they can always be put back into any expression.

Finally, by a judicious choice of α and β we can sin-
gle out theories with interesting properties. For instance,
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when α/p is a negative integer −n, the tree-level ampli-
tude generating function φ0(x) is a finite polynomial of
degree n. This implies that the tree-level amplitudes with
n + 2 or more external legs all vanish. In higher orders,
though, these amplitudes may be non-zero since φL(x) has
exponent n− (n+ 1)L. In the same vein, when p = 0 the
amplitudes do not necessarily vanish, but the generating
function goes with a power of exp(−x) at every loop order,
which implies that the amplitudes go as 1/n! rather than
as n!, a situation that has been discussed (at the kinematic
threshold rather than at zero momentum) elsewhere [6].

Similarly, if β/α = −n/(n+ 1), with n a non-negative
integer, the L-loop contribution φL(x) is a finite polyno-
mial in x of degree n(L− 1) − 1 for L ≥ 2, which implies
that L-loop corrections vanish for Green’s functions with
more that n(L− 1) external legs.

In the one-dimensional case, an interesting situation is
that where β = 2α. In that case,

φ(x) =
1
α

− 1
(1 + px/µ)α/p


 1
α

−
∑
L≥1

�
LtL


 , (15)

so that in the zero-momentum amplitudes all loop correc-
tions can be completely absorbed into finite tadpole and
mass renormalization (see also the discussion in a later
section of this paper).

For theories with β/α = −2n/(1 + 2n) we find, in this
case, that φL(x) contains the exponent (1+3n)(L−1)+n,
so that again loop corrections vanish for sufficiently large
numbers of legs.

In higher dimensions, the tadpole factors tL will them-
selves also depend on d, and in fact for d ≥ 2 they con-
tain divergences. As long as we use dimensional regular-
ization it is therefore tempting, but erroneous, to choose
attractive-looking values for d. For instance, choosing d =
2 and α = 0 would at first sight seem to eliminate the x
dependence in the loop corrections, but the more careful
treatment d = 2−2ε, ε → 0 reveals that tL will, in general
contain poles in ε up to ε−L so that, in fact all amplitudes
have loop corrections.

We may use a similar argument for the one-particle ir-
reducible (1PI) diagrams of the theory. The only difference
is that the new line may not be attached to an existing
external line, so that the relevant operation reads

D(n) →
∑
k≥2

λk+1

µ

∂

∂λk
D(n) + (n+ 1)

λ3

µ2D(n).

Denoting the generating function of the 1PI 1 → n ampli-
tudes by φ1PI, we now find the differential equation

(µ− αx)
∂

∂x
φ1PI − pφ1PI + ((1 − d/2)β − dα) �

∂

∂�
φ1PI

= 1, (16)

which is quite similar to the equation for the connected
amplitudes. Its solution reads

φ1PI(x) = −1
p

+
1
p
(1 − αx/µ)−p/α

+ (1 − αx/µ)−p/α (17)

×
∑
L≥1

t1PI
L (µ;α, β)

(
�(1 − αx/µ)(β(1−d/2)−dα)/α

)L

,

and again everything is determined by the (1PI) tadpole.
The effective action of the theory, Γ (ϕ), can simply be
found from

Γ ′(ϕ) = µφ1PI(µϕ). (18)

A final note on the divergence structure of the ampli-
tudes is in order. At first sight it might be thought that,
since any L-loop amplitude is proportional to tL, these
amplitudes must all have the same divergence structure.
That this is not necessarily the case can be seen from
the following simple example. Consider the 1PI one-loop
amplitudes for the pure ϕ3 theory in d dimensions, i.e.
β = −3α and L = 1. We find

φ1PI
1 (x) = �t1

(
1 − αx

µ

)d/2−1

= �t1

(
1 −

(
αx

µ

)
(d− 2)

2

+
(
αx

µ

)2 (d− 2)(d− 4)
8

+ · · ·
)
. (19)

The tadpole contribution,

�t1 = − α�

2(4π)d/2µ
d/2−1Γ

(
1 − d

2

)
, (20)

is divergent for d = 2, 4, 6, . . . It can be seen that in two
dimensions the 1PI propagator is then finite. In four di-
mensions, the 1PI propagator is divergent (but less so than
the tadpole) and the 1PI three-point function is finite, and
so on; precisely in accordance with what is expected on the
basis of the Feyman diagrams, that all consist of a single
loop beaded with three-point vertices.

Before finishing this section we wish to point out the
following. In the definition of the recursive action it is very
important that the one-point coupling λ1 is not included.
Consider a theory with an explicit tadpole term, given by

Vtad(ϕ) = λ1ϕ+ V (ϕ), (21)

with a recursive potential V (ϕ) as given in (1). It is easily
seen that the generating function φtad(x) of this theory is
related to the one without the tadpole term by

φtad(x) = φ(x− λ1) =
1
α

− 1

α

(
1 − λ1p

µ
+
xp

µ

)α/p

+ (loop corrections). (22)

If we let λ1 approach its recursive value, λ1 = µ/p, the
generating function obtains its singularity at x = 0, and
perturbation theory breaks down even at the tree level.
This is caused by the fact that, with a non-zero bare tad-
pole term, every amplitude at every loop order contains an
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infinite number of Feynman diagrams, the sum of which,
order by order, is no longer convergent at precisely the re-
cursive value of the tadpole. For larger absolute values of
the tadpole coupling, φ can only be obtained by analytic
continuation.

3 Duality in zero dimensions

Throughout this section, we shall assume d = 0. The Eu-
clidean path integral in the presence of a source x is then
given by

Z(x) =
∫
C

dϕ exp
(

−1
�
(Sα,β(ϕ) − xϕ)

)
, (23)

where we have explicitly indicated the parameters entering
in S(ϕ). The integration contour C is preferably such that
the integrand vanishes sufficiently fast at the endpoints.
However, if we restrict ourselves to perturbation theory it
is sufficient that the endpoints do not approach the per-
turbative extremum ϕ = 0. This is particularly important
when β/α is not integer so that the action displays branch
cuts starting at ϕ = 1/α. The generating funciton of the
connected amplitudes is given by

φ(x) =
�

Z(x)
∂

∂x
Z(x). (24)

The tadpole for this theory is therefore

Tα,β ≡ φ(0) =
〈ϕ〉α,β

〈1〉α,β

, (25)

where

〈A(ϕ)〉α,β ≡
∫

dϕA(ϕ) exp
(

−Sα,β(ϕ)
�

)
(26)

for any function A(ϕ) of ϕ. By partial integration we may
prove the following useful lemma:〈

A(ϕ)S′
α,β(ϕ)

〉
α,β

= � 〈A′(ϕ)〉α,β . (27)

Now, consider the object ψ dual to ϕ, defined by

(1 − βψ)α(1 − αϕ)β = 1

⇒ ψ =
1
β

(
1 − (1 − αϕ)−β/α

)
. (28)

In terms of ϕ, ψ is a “composite” object, and we have

Sα,β(ϕ) = −µ

p
(ϕ+ ψ) = Sβ,α(ψ). (29)

We may replace ϕ as a dummy integration variable by ψ.
For instance,

〈1〉α,β =
〈

dϕ
dψ

〉
β,α

=
〈

−1 − p

µ
S′

β,α(ψ)
〉

β,α

= − 〈1〉β,α . (30)

The zero-dimensional action satisfies a linear differential
equation:

(1 − αϕ)S′
α,β(ϕ) − βSα,β(ϕ) = µϕ, (31)

so that S can be expressed in terms of S′. Together with
the lemma, this allows us to compute also

α 〈ϕ〉α,β = α

〈(
1 +

p

µ
S′

β,α(ψ)
) (

ψ +
p

µ
Sβ,α(ψ)

)〉
β,α

=
p�

µ
(α− β) 〈1〉β,α − β 〈ψ〉β,α . (32)

We therefore find a simple relation between the tadpoles
of the two dual theories with Sα,β and Sβ,α:

α

(
Tα,β(�) +

p�

µ

)
= β

(
Tβ,α(�) +

p�

µ

)
. (33)

This duality allows for some immediate conclusions. In the
first place, the free theory is recursive, with β = −2α so
that λ3 = 0, and it has a vanishing tadpole. Its dual is the
action given by

S−2α,α(ϕ) =
µ

α2

(
1 + αϕ−

√
1 + 2αϕ

)
, (34)

and its tadpole is therefore immediately seen to be

T−2α,α =
3α�

2µ
; (35)

in this theory, all loop corrections beyond the one-loop
level vanish identically! Similarly, the action with β → 0
and hence u = 2, given by

Sα,0(ϕ) =
µ

α2 (−αϕ− log(1 − αϕ)) , (36)

has for its tadpole

Tα,0 = −α�

µ
, (37)

and again all higher orders vanish identically. The results
(35) and (37) are confirmed by explicit computation of the
zero-dimensional path integral.

The zero-dimensional duality has another interesting
consequence. Putting µ = p = 1 and writing α = u − 1,
β = 2 − u we can write the tadpole duality as

(u− 1)R2L−1(u) = (2 − u)R2L−1(3 − u), L ≥ 2, (38)

where R2L−1(u) is the polynomial entering in tL as dis-
cussed above. This means that R2L−1(u) must have a root
at u = 2 (as indeed we have seen). Moreover, since u = 0
corresponds to the free action, R2L−1(u) must vanish for
u = 0, and by duality also for u = 3. We can therefore
write

R2L−1(u) = u(2 − u)(3 − u)PL−2(ω),
ω = u(3 − u), L ≥ 2, (39)

where PL−2(ω) is a polynomial of degree L− 2 only.
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4 Explicit solutions in zero dimensions

In this section we discuss a few explicitly solvable mod-
els with d = 0. For simplicity, we shall take µ = 0 and
p = 1. The models are, then, completely specified by the
parameter u. We may therefore write Sα,β(ϕ) = Su(ϕ),
and the duality operation is the interchange u ↔ 3 − u.
The partition function Z(x) is in general determined from
the Schwinger–Dyson (SD) equation

S′
(

�
∂

∂x

)
Z(x) = xZ(x), (40)

which leaves the overall normalization of Z(x) undeter-
mined. For recursive actions, the SD equation may be
rewritten as(

1 − α�
∂

∂x

)−1/α

Z(x) = (1 + x)Z(x). (41)

The simplest case is the free theory, u = 0, leading to
Z(x) = exp(x2/2) and φ = x, and the effective action is
Γ0(ϕ) = S0(ϕ). The next simplest case is u = 2:

S2(ϕ) = −ϕ− log(1 − ϕ), (42)

leading to the SD equation

1
1 − �∂

Z(x) = (1 + x)Z(x), ∂ ≡ ∂

∂x
. (43)

Multiplying from the left by Z(x)−1(1−�∂) on both sides
gives immediately the form of φ:

φ =
x− �

(1 + x)
, (44)

in agreement with the result from duality. The effective
action is most simply obtained from inverting this relation:

φ(x) = F (x) → x(φ) = Γ ′(φ).

In this case, we find

Γ2(ϕ) = −ϕ− (1 + �) log(1 − ϕ), (45)

so that also the effective action is free of L ≥ 2 corrections.
The case u = 1 corresponds to the action dual to

S2(ϕ):
S1(ϕ) = eϕ − 1 − ϕ, (46)

leading to a functional form for the SD equation:

e�∂Z(x) = Z(x+ �) = (1 + x)Z(x), (47)

and a functional equation for φ(x):

φ(x+ �) = φ(x) +
�

1 + x
. (48)

Together with the requirement lim�→0 φ(0) = 0 this im-
plies

φ(x) = log � + ψ

(
1 + x)

�

)
(49)

= log(1 + x) − �

2(1 + x)
−

∑
L≥2

BL

L

(
�

1 + x

)L

,

where ψ() denotes the digamma function, and we have
indicated the asymptotic expansion, where BL are the
Bernoulli numbers. The behavior with x of this result is,
of course, already given from the recursivity of the model,
but as stated before, the tadpole itself can only be ob-
tained from the SD equation. Since BL = 0 for odd L ≥ 3,
we conclude that for this model all odd-loop amplitudes
beyond the one-loop level vanish completely. This result is
significant since, in this model, every coupling constant λn

is unity, and the value of every Feynman diagram is given
by only its symmetry factor times a factor (−1) for every
vertex; we therefore have, here, a strictly graph-theoretic
result. The one-loop tadpole consists, of course, of only a
single diagram and can never vanish. For the effective ac-
tion we find a similar result, at least empirically. Writing
x as a function of φ gives the effective action:

Γ ′
1(ϕ) = −1 + eϕ +

∑
L≥1

aL�
Le(1−L)ϕ, (50)

where a1 = 1/2 and the first few even coefficients aL read

a2 = −1/24,
a4 = 3/640,
a6 = −1525/580608,
a8 = 615881/199065600,
a10 = −3058641/504627200,
a12 = 38800188510523/2191186722816000,
a14 = −3213747182969063/44497945755648000,
a16 = 100462329712125/255806104666112. (51)

The only one-loop 1PI amplitude is the tadpole. All co-
efficients for odd L ≥ 3 appear to vanish again: we have
checked this up to 60 loops, but we have not been able
to prove it rigorously. The fact that the pattern of zeroes
in both φ and φ1PI is the same is intimately tied up with
the occurrence of the Bernoulli numbers: if we assume
the given x dependence in φ and insist that the 3, 5, 7, . . .
loop corrections vanish in both φ and φ1PI, we recover the
above result for φ as the unique solution.

For u = 3 we have the action dual to the free one:

S3(ϕ) = 1 − ϕ−
√

1 − 2ϕ. (52)

Its SD equation reads

DZ = yZ, y = 1 + x, D ≡
(

1 − 2�
∂

∂y

)−1/2

. (53)

Although this is an infinite-order differential equation, it
is solvable by using the fact that D and y obey a commu-
tation relation

[D, y] = �D3. (54)

This allows us to write

D2Z = D(yZ) = yDZ + �D3Z = y2Z + �D2(yZ). (55)
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Multiplying from the left by D−2 = 1−2�∂/∂y then gives
a linear SD equation for Z, from which φ follows alge-
braically:

Z = y2Z − 3�yZ − 2�y2∂Z,

φ =
1
2

(
1 − 1

(1 + x)2

)
− 3�

2
1

(1 + x)
, (56)

which is precisely the result obtained earlier by duality.
The effective action is given by

Γ ′
3(ϕ) = −1 +

1
1 − 2ϕ


3�

2
+

√
1 − 2ϕ+

(
3�

2

)2

 . (57)

For this theory, the 1PI amplitudes for odd L ≥ 3 vanish
identically.

For polynomial recursive actions with highest inter-
action term ϕK+1 (integer K) and p = µ = 1 we have
α = −1/K, β = (K + 1)/K, and hence the SD equation
has finite order: (

1 +
�

K

∂

∂y

)K

Z = yZ. (58)

We can show that, even though the dual theories of these
actions are not of finite polynomial form, nevertheless
their SD equations can also be cast in the form of differ-
ential equations of order K, as follows. The dual actions
have α = (K + 1)/K, and the SD equation is(

1 − �(K + 1)
K

∂

∂y

)−K/(K+1)

Z = DKZ = yZ, (59)

where

D =
(

1 − �(K + 1)
K

∂

∂y

)−1/(K+1)

. (60)

The differential operatorD has the following commutation
relation with y:

Dsy = yDs +
s�

K
Ds+K+1, (61)

for general s, and hence

DsZ = Ds−K(yZ) = yDs−KZ +
�(s−K)

K
Ds+1Z. (62)

By repeating this operation, it is easily seen that

A0 ≡ DsZ = A1 = A2 = A3 = . . . ,

Am =
m∑

n=0

γ(m)
n ym−n

�
nDs−mK+n(K+1)Z, (63)

γ(m)
n = γ(m−1)

n + γ
(m−1)
n−1

s− (m+ 1)K + n(K + 1) − 1
K

,

and the recursion relation for the γ’s starts at γ(0)
n = δn,0.

Choosing s = K(K + 1) and m = K we are then left with

DK(K+1)Z =
K∑

n=0

γ(K)
n yK−n

�
nDn(K+1)+KZ, (64)

or, in other words,(
1 − �(K + 1)

K

∂

∂y

)−K

Z (65)

=
K∑

n=0

γ(K)
n yK−n

�
n

(
1 − �(K + 1)

K

∂

∂y

)−n

(yZ).

By multiplying from the left by (1 − ((�(K + 1))/K)
×(∂/∂y))K , we obtain the differential equation of finite
order K mentioned above, with coefficients containing
powers of y up to yK+1. We give here the results for the
first few K values:

K = 1 : Z0 = y2Z1 − 3�yZ0,

K = 2 : Z0 = y3Z2 − 6�y2Z1 + 5�
2yZ0,

K = 3 : Z0 = y4Z3 − 10�y3Z2 +
65
3

�
2y2Z1 − 70

9
�

3yZ0,

K = 4 : Z0 = y5Z4 − 15�y4Z3 + 60�
2y3Z2

− 525
8

�
3y2Z1 +

189
16

�
4yZ0, (66)

where Zn ≡ (1 − ((�(K + 1))/K)(∂/∂y))n
Z.

Another class of models is that for which α = 1/K,
with K a positive integer, hence u = 1 + 1/K. Their SD
equation reads

Z =
(

1 − �

K

∂

∂y

)K

(yZ), (67)

again a linear equation of finite order. Among these models
is the “self-dual” action with K = 2 and u = 3/2, with
solution

Z = y−1/2 exp
(

−2y
�

)
I1

(
4y1/2

�

)
, (68)

where I is the modified Bessel function of the first kind.
The resulting tadpole reads

T (�) = 2
I0 (4/�)
I1 (4/�)

− 2 − �. (69)

The other solution, which has the modified Bessel function
of the second kind, K1 instead of I1 in Z(x), has a non-
vanishing tree-level tadpole and hence does not correspond
to a perturbative solution. For K → ∞ we return to the
case u = 1 discussed above.

A final case of interest is the “almost-free” theory, with
u = ε � 1. The action reads, in this case,

Sε(ϕ) =
1
2
ϕ2 +

ε

4
(−2ϕ− 3ϕ2 + 2(1 + ϕ)2 log(1 + ϕ)

)
+ O(ε2), (70)

and the SD equation,(
(1 − ε)�

∂

∂x
+ ε

(
1 + �

∂

∂x

)
log

(
1 + �

∂

∂x

)
− x

)
Z(x)

= O(ε2), (71)
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looks quite hopeless. However, we may solve it by realiz-
ing that, for small ε, the coupling constants are also very
small:

λk = (−)(k−3)(k − 3)!ε+ O(ε2), k ≥ 3. (72)

Therefore, the tadpole is dominated by diagrams with only
one vertex. The L-loop tadpole therefore contains only
λ2L+1, and

T (�) = −
∑
L≥1

(2L− 2)!
2LL!

�
Lε

= − ε

2

∞∫
0

dz
exp(−z)

z

(
1 − √

1 − 2z�
)
. (73)

In the integral representation, the ambiguity arising from
the branch cut shows up as a nonpertrubative effect only.
Note that this result allows us to conclude that

PL−2(0) = − (2L− 2)!
2L+1 · 3 · L!

, L ≥ 2. (74)

5 Higher loops and nullification patterns

The observed patterns of vanishing higher-loop corrections
leads naturally to the question of whether there are more
such patterns, maybe for non-recursive actions. To answer
this it is necessary to determine the general structure of
higher-loop corrections in general zero-dimensional theo-
ries. To this end, we may write the L-loop term in the SD
equation as

∑
{cl,n}

S(k) (φ0(x))
∏

l,n≥0

[
1
cl,n!

(
φ

(n)
l (x)

�
n

(n+ 1)!

)cl,n
]

= 0,

(75)
where the sum extends over all non-negative integer val-
ues of cl,n with the condition that

∑
(l + n)cl,n = L,

and k = 1 +
∑

(n + 1)cl,n: the upper indices in brack-
ets denote derivatives. This equation is valid for general
zero-dimensional actions: all specifics of the action are en-
coded in φ0(x), or rather f(x) = φ′

0(x): since by definition
S′(φ0(x)) = x, we can find the higher derivative terms us-
ing

S(k)(φ0(x)) =
1

f(x)
∂

∂x
S(k−1)(φ0(x)). (76)

In the above representation of the SD equation, the L-loop
correction φL(x) occurs only in the combination
φL(x)S(2)(φ0(x)), and therefore φL(x) is simply expressed
in terms of the lower ones and their derivatives, and hence
eventually in terms of f(x) and its derivatives. The first
few loop corrections are

φ1 =
1
2
f1,

φ2 =
1

24f
(
12f3

1 − 14f2f1 + 3f3
)
,

φ3 =
−1

48f2

(
− 144f5

1 − 68f2
1 f3 + 11f4f1 − f5 − 96f1f2

2

+ 276f3
1 f2 + 20f3f2

)
,

φ4 =
1

5760f3

(
138480f4

1 f3 − 1212f4f3

− 136800f2
1 f2f3 + 13260f2

2 f3

+ 9360f1f2
3 + 204480f7

1 − 300f6f1 + 15f7
− 780f5f2 + 3320f5f2

1

+ 390960f3
1 f

2
2 − 545280f5

1 f2 + 14620f1f4f2

− 25200f3
1 f4 − 64440f1f3

2

)
,

φ5 =
1

11520f4

(
8400f3

3 + 3f9 + 7292160f9
1

− 152520f2
1 f5f2 + 9760f6f1f2

+ 17872f1f5f3 + 1552320f3
1 f2f4 − 237560f2

1 f3f4

+ 39400f2f3f4 − 335820f1f2
2 f4 − 430000f1f2f2

3

+ 4212960f2
1 f

2
2 f3 − 11004960f4

1 f2f3

− 202800f3
2 f3 − 320f7f2 − 19640f3

1 f6 + 1640f7f2
1

+ 992160f4
2 f1 − 10357920f3

1 f
3
2 − 95f8f1

+ 27145440f5
1 f

2
2 − 24914880f7

1 f2

+ 994240f3
1 f

2
3 + 6411840f6

1 f3 − 962f5f4
− 672f6f3 + 12660f2

2 f5

− 1217040f5
1 f4 + 10870f1f2

4 + 176400f4
1 f5

)
, (77)

where
f = f(x), fn =

1
f(x)

f (n)(x). (78)

Note the “homogeneity” in the number of derivatives in
each term: this also follows from simple dimensional argu-
ments. The highest derivative occurring in φL is f2L−1.

The requirement of one-loop nullification, φ1 = 0, gives
immediately that f ′(x) = 0, so that the free action is
the only possibility, as we know. Let us therefore study
nullification at two loops, that is, φ2 = 0. This implies the
following differential equation for g(x) = f1:

3g′′ − 5gg′ + g3 = 0. (79)

Writing g′ = g2s(g) we can rewrite this as

3gss′ + 6s2 − 5s+ 1 = 0. (80)

Two obvious solutions are s = 1/2 and s = 1/3: the cor-
responding actions are S2(ϕ) and S3(ϕ), discussed above.
Otherwise, we can integrate the equation to get

log(g) = log(3s− 1) − 3
2

log(2s− 1) + c, (81)

where c is the constant of integration. This in turn tells us
that s is the solution of a third-order algebraic equation
involving g and c, so that there are in principle three so-
lutions for s(g) = −(1/g)′. Working back to φ0(x) we pick
up two additional constants of integration, which corre-
spond to the trivial scaling transform φ0(x) → a1φ0(a2x).
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Disregarding this, we conclude that there are three differ-
ent one-parameter classes of actions that show two-loop
nullification. Note that these are not recursive, since any
recursive action implies s = constant.

If, in addition to two-loop nullification, there is also
nullification at some higher L, we may employ φ2 = 0 to
express f3,4,5,... in terms of f1 and f2. Nullification at L
loops therefore implies, because of the homogeneity, that

φL = 0 ⇒ P

(
f2
f2
1

)
= 0, (82)

where P is some finite polynomial. This in turn means
that g′/g2 is a constant, so that the action is necessarily
recursive, and S2,3(ϕ) appear as the only possibilities. We
conclude that if the L-loop amplitudes vanish for L = 2
and one higher value of L, all loop corrections are identi-
cally zero beyond the one-loop level.

For the actions S0,1,2,3(ϕ) we see that both φ and φ1PI

have interesting nullification patterns. It is natural to won-
der whether there are other theories in which the effective
action has no corrections beyond the one-loop level, that
is: is there a theory in which

Γ ′(φ) = S′(φ) + �Γ ′
1(φ) = S′(φ0)? (83)

This question can be answered by inserting the loop ex-
pansion for φ involving f(x) and its derivatives, and mak-
ing a Taylor expansion in � in the above equation. We
immediately find, from the term linear in �:

Γ ′
1(φ0) = − f ′(x)

2f(x)2
, (84)

so that not only the derivatives of S but also those of Γ1
are completely expressed in terms of f and fj . The �

2

term then results in

3g′′(x) = −4g(x)3 + 11g(x)g′(x),
g(x) = f ′(x)/f(x), (85)

so that all terms �
L, L ≥ 3 are completely expressed in

terms of g′/g2: again we are naturally led to recursive
actions. From the �

3 and �
4 terms we find the conditions

0 = −2g5(6v + 1)(2v − 1),
0 = −8g7(2v − 1)(1395v2 + 690v − 646)), (86)

where g′ = vg2 so that v = 1/u. The only common solu-
tions are g = 0, corresponding to the free action S0, and
u = 2, corresponding to the action S2, and we know that
for these theories the effective action indeed stops at one
loop. Thus we have proven that these are, in fact, the only
theories with this property.

6 Nullification for recursive actions

Computing the higher-order amplitudes from (75) is in
principle straightforward, but for large L it becomes im-
practical. The number of terms in the expression (75) for

given L is easily seen to be equal to the coefficient of xL

in the function

∏
m≥1

(
1

1 − xm

)m+1

,

and hence grows much faster than the number of partitions
of m which is known to grow as ∼ exp(π(2n/3)1/2). For
recursive actions, however, we can simplify the treatment,
as follows. The SD equation, written in terms of φ(x),
reads

S′
(
φ(x) + �

∂

∂x

)
e(x) = x, (87)

where e(x) = 1 is the unit function. This means that the
SD equation is built up from

Rn =
(
φ(x) + �

∂

∂x

)n

e(x), n = 1, 2, 3, . . . (88)

and we must evaluate these objects efficiently. As before,
we put µ = p = 1. Now, the Rn are all of the form

Rn+1 = g0,nα

∑
L≥0

�
Lg0,LβPn,L(z),

gm,n ≡ φ0(x)m 1
(1 + x)n

,

z ≡ g1,−α. (89)

This hinges on the fact that

∂

∂x
gm,n = (m− nz)gm−1,n+1+α,

∂

∂x
z = (1 + αz)g0,1. (90)

By inspection of the form of R2 we obtain the following
recursive definition1 of the polynomials Pn,L:

Pn,L(z) = θ(n = 1) {θ(L = 0)z + θ(L ≥ 1)tL}

+ θ(n ≥ 2)

{
L∑

M=0

P1,M (z)Pn−1,L−M (z)

+ θ(L ≥ 1)((1 − α)(1 − L) − (n− 1)α)
× Pn−1,L−1(z)

+ θ(L ≥ 1)(1 + αz)
∂

∂x
Pn−1,L−1(z)

}
. (91)

Here we have written tL = tL(u) for φL(0), with u = 1+α.
Using this recursion, we can compute the Pn,L(z) to quite
high order in L: notice that for given L, they have to be
computed up to n = 2L. Since the SD equation holds for
any x we may evaluate it at x = 0, where z = 0 and
g0,k = 1 for any k: it then becomes

∑
n≥2

λn+1

n!
�Rn�x=0 = 0. (92)

1 The logical step function θ(A) is one if A is true, else zero
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This allows us to successively determine the tL. We have
implemented this approach in a FORM program [7]. Note
that the complexity of the algorithm in its most straight-
forward form is of order L6; by various optimizations we
managed to go up to L = 50 which takes about 24 hours of
FORM. Note that for L = 50, (75) contains 213,927,397,
257 terms!

The lowest-order polynomials tL(u) read

t1(u) = −u

2
,

t2(u) = − u

24
(u− 2)(u− 3),

t3(u) = − u

24
(u− 1)(u− 2)2(u− 3),

t4(u) = − u

1920
(u− 2)(u− 3)(7u2 − 21u+ 12)

× (23u2 − 69u+ 50),

t5(u) = − u

1440
(u− 1)(u− 2)2(u− 3)

× (367u4 − 2202u3 + 4685u2 − 4146u+ 1260),

t6(u) = − u

580608
(u− 2)(u− 3)

×
(
601285u8 − 7215420u7 + 37068226u6

− 106328304u5 + 185954749u4 − 202661124u3

+ 134127612u2 − 49166352u+ 7620480
)
,

t7(u) = − u

60480
(u− 1)(u− 2)2(u− 3)

×
(
318344u8 − 3820128u7 + 19590653u6

− 55981845u5 + 97298966u4 − 105068217u3

+ 68637897u2 − 24716070u+ 3742200
)
,

t8(u) = − u

199065600
(u− 2)(u− 3)

×
(
6389072441u12 − 115003303938u11

+ 935605664709u10 − 4546312395750u9

+ 14686419780735u8 − 33204111807078u7

+ 53832598760431u6 − 63007849676250u5

+ 52791473853204u4 − 30847914995544u3

+ 11919566344320u2 − 2731077648000u

+ 280215936000
)
, (93)

and so on.
From duality we have seen that tL(u) is of the form

tL(u) = u(u− 2)(u− 3)QL(u), (94)

with QL(u) a polynomial of degree 2L − 4 in u, which
is symmetric under u ↔ 3 − u: it is therefore a polyno-
mial of degree L− 2 in the variable u(3−u), which makes
finding the roots simpler. We therefore discuss only the
“lower half” of the roots of QL(u). Surprisingly, all roots
are real up to L = 18, where a pair of conjugate roots ap-
pear. Other pairs appear at L = 27, 34, 41 and 48. In Fig. 1
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Fig. 1. Distribution of the real values of u for which QL(u)
vanishes, for 3 ≤ L ≤ 50. Horizontal: L, vertical: Re(u)

we give the distribution of the real values of the roots of
QL(u) that are smaller than 3/2. It is suggestive to fol-
low roots over trajectories as L increases. At L = 18 the
second and third lowest lines appear to merge, leading to
conjugate complex roots. For higher L, the fourth line does
not merge with these two, but actually crosses them (this
is borne out by inspecting which roots are real, and which
ones complex). For L = 27 a similar phenomenon occurs,
and so on. For large L, there is an apparent asymptotic
upper limit 3/2 which is just an artefact of our restriction
to Re(u) < 3/2. There is also a lower asymptotic bound
1/2. This bound can, in fact, be understood: it is easy to
see that, for 0 < u < 1/2, the single vertex −λn+1 occur-
ring in a diagram has the same sign as the product λnλ3,
corresponding to “opening up” the vertex by insertion of
a propagator. This implies that in that case all diagrams
contributing to a given amplitude have precisely the same
sign, so no cancellation is possible and no root of QL(u)
can be in (0, 1/2) for any L: by duality, the same holds
for the interval (5/2, 3). On the other hand, it is not clear
why there should be no roots with negative real part (or
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Fig. 2. Distribution of the imaginary values of u for which
QL(u) vanishes, for 3 ≤ L ≤ 50. Horizontal: L, vertical: Im(u)

real part larger than 3), or why there should not be any
complex roots with real part between 0 and 1/2. Figure 2
shows the distribution of the imaginary parts of the roots,
where the branching structure becomes especially appar-
ent.

7 Renormalization

Because of the fairly simple structure of φ(x) in zero di-
mensions, it is often possible to carry through a renor-
malization program for recursive actions, as we shall now
show.

Reinserting generic values for α and µ, the action
S2(ϕ) has for its solution

φ(x) =
x− α�

µ+ αx
. (95)

As a first step, we add a tadpole counterterm to the ac-
tion, which has the effect of shifting the variable x by a
constant. The tadpole renormalization condition is that

φ(x) should have no tadpole left after renormalization.
Denoting the renormalized generating function by φr(x),
we therefore have

φr(x) ≡ φ(x+ c), φr(0) ≡ 0 ⇒ c = α�, (96)

so that
φr(x) =

x

µ+ α2� + αx
. (97)

The second renormalization condition is that of mass re-
normalization. Denoting the renormalized, physical mass
by m, we therefore require

φ′
r(0) =

1
m2 , (98)

which fixes µ:
µ = m2 − α2

�. (99)

The resulting renormalized generating function and the
renormalized effective action can therefore be written as

φr(x) =
x

m2 + αx
,

Γ (ϕ) =
m2

α2 (−αϕ− log(1 − αϕ)) . (100)

Hence, all loop corrections have been completely absorbed.
As mentioned before, a similar finding occurs for d =
0, u = 4/3.

The action S3(ϕ) also leads to fairly simple results. We
have

φ(x) =
1
α

− 4µ2

α

1
(2µ+ αx)2

− 3α�

2
1

2µ+ αx
. (101)

Writing the tadpole counterterm as (c − 2)µ/α we have
for the renormalized φ:

φr(x) =
1
α

− 4µ2

α

1
(cµ+ αx)2

− 3vm2

2α
1

cµ+ αx
, (102)

where the renormalization conditions are, as before,

φr(0) = 0, φ′
r(0) =

1
m2 , (103)

and we have introduced the dimensionless parameter v =
α2

�/m2. The two renormalization conditions imply two
coupled equations for c and µ:

0 = −2µ2c3 + 3vm4c+ 16µm2,

0 = 16µm2 + (−8µ2 + 3vm4)c− 3µc2vm2. (104)

These can be combined to give c as a function of µ, and a
quadratic equation for µ2:

c =
8µm2(4 − 3v)

16µ2 − 6vm4 + 9v2m4 ,

0 = −128µ4 − 192m4vµ2 + 128m4µ2

+ 18v2m8 − 27v3m8. (105)
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The perturbative solution for µ is

µ =
m2

4

√
8 − 12v +

√
64 − 192v + 180v2 − 54v3, (106)

so that the perturbative expansion of µ and c contain an
infinite number of terms. We conclude that, although the
unrenormalized amplitudes vanish for two or more loops,
renormalization reintroduces non-zero amplitudes at all
loops.

For the action S1(ϕ) we have

φ(x) =
1
p

[
ψ

(
µ+ px

�p2

)
+ log

(
�p2

µ

)]
. (107)

The conditions for the renormalized function φr(x) =
φ(x+ c) now read

φr(0) = 0 ⇒ ψ(w) = log
(
µ

p2�

)
,

φ′
r(0) =

1
m2 ⇒ ψ′(w) =

p2
�

m2 , (108)

with w = (µ+pc)/(p2
�). Since ψ′ is monotonic for w ≥ −1

and takes all real values, the second equation gives w
uniquely for given m; and the first one then gives µ, and
hence also c. Following through this program in pertur-
bation theory gives the following interesting result. Using
the dimensionless number v = p2

�/m2 and the asymp-
totic expansions for ψ and ψ′(w), we obtain the following
results:

w =
1
v

+
1
2

− 1
12
v +

11
720

v3 − 379
30240

v5

+
24369

1209600
v7 . . . ,

µ

m2 = 1 − 1
24
v2 +

71
5760

v4 − 31741
2903040

v6

+
25265783

1393459200
v8 + . . . ,

c
p

m2 =
1
2
v − 1

24
v2 +

17
5760

v4 − 4643
2903040

v6

+
559157

278691840
v8 + . . . , (109)

and, putting m = p = 1 for simplicity, we find for the
renormalized generating function

φr(x) = log(1 + x) +
x2v2

24
1

(1 + x)2

− x2v4

2880
76 + 88x+ 33x2

(1 + x)4
+

x2v6

362880

× 3790x4 + 18192x3 + 34572x2 + 31636x+ 12861
(1 + x)6

+ · · · (110)

The higher powers of v in the results for (vw), µ, c and φ
all appear to be even. We have checked this up through
order v30. The conclusion is that for the action S1, all
odd-loop corrections vanish after tadpole and mass renor-
malization, thereby even improving on the unrenormalized
pattern. This is in accordance with our conjecture that for
this theory the only odd-loop contribution to the effective
action is the one-loop tadpole, which is removed by renor-
malization.

8 Conclusions

We have identified recursive theories, an essentially one-
parameter class of self-interacting scalar theories in which
zero-momentum amplitudes are related in a simple and
systematic manner. In the case of zero-dimensional the-
ories, several of these theories can be solved exactly and
display an interesting pattern of vanishing higher-loop am-
plitudes and 1PI amplitudes. We have identified a duality
property in which composite objects in a given theory are
the elementary fields in its dual. A study of the depen-
dence of the higher-loop amplitudes on the parameter, u,
of the theory reveals a remarkable pattern of roots.
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